import cv2 import os import numpy as np def subtractbackground(search_img, without_back): os.chdir('C:/Users/Ainarikiaz/Documents/Year 2 BA DESIGN/2.2/collagedream/images') BLUR = 21 CANNY_THRESH_1 = 10 CANNY_THRESH_2 = 200 MASK_DILATE_ITER = 10 MASK_ERODE_ITER = 10 MASK_COLOR = (0.0,0.0,1.0) img = cv2.imread(search_img) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, CANNY_THRESH_1, CANNY_THRESH_2) edges = cv2.dilate(edges, None) edges = cv2.erode(edges, None) contour_info = [] contours, _ = cv2.findContours(edges, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE) for c in contours: contour_info.append(( c, cv2.isContourConvex(c), cv2.contourArea(c), )) contour_info = sorted(contour_info, key=lambda c: c[2], reverse=True) max_contour = contour_info[0] mask = np.zeros(edges.shape) cv2.fillConvexPoly(mask, max_contour[0], (255)) mask = cv2.dilate(mask, None, iterations=MASK_DILATE_ITER) mask = cv2.erode(mask, None, iterations=MASK_ERODE_ITER) mask = cv2.GaussianBlur(mask, (BLUR, BLUR), 0) mask_stack = np.dstack([mask]*3) mask_stack = mask_stack.astype('float32') / 255.0 img = img.astype('float32') / 255.0 masked = (mask_stack * img) + ((1-mask_stack) * MASK_COLOR) masked = (masked * 255).astype('uint8') c_red, c_green, c_blue = cv2.split(img) img_a = cv2.merge((c_red, c_green, c_blue, mask.astype('float32') / 255.0)) cv2.imwrite(without_back, img_a*255)